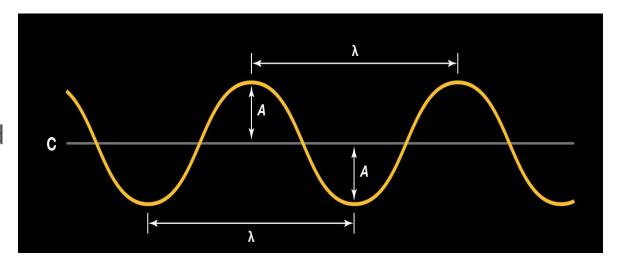


Noise in the Workplace

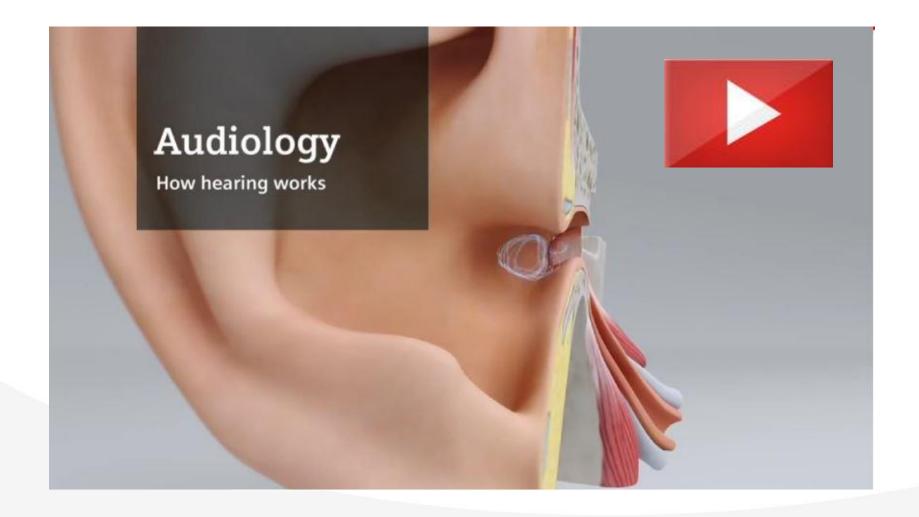
Aims and objectives

- Promote understanding of noise
- Discuss methods to limit exposure workplace noise
- Promote a healthier working environment
- Protect hearing in the short and long terms
- Reduce stress
- o ...to go home safe

Discussion Topics


- O What is sound?
- How the ear works
- O What is noise?
- The effects of exposure to noise
- Facts & figures
- Quantification and assessment of noise
- Regulatory compliance
- Measures to control exposure to noise

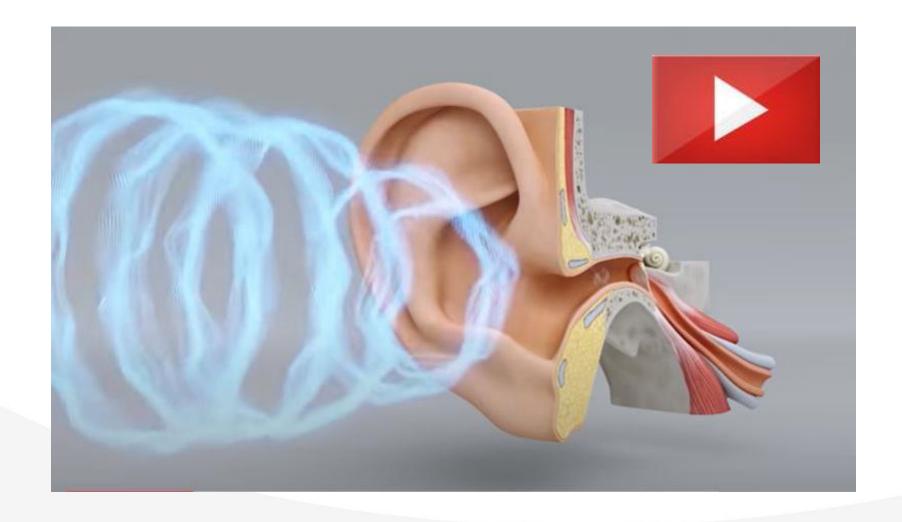
What is Sound?



- Sound is energy movement through a media
- Transmitted in waves
- Structure of the wave dictates frequency and amplitude
- The distance λ dictates the frequency
- The distance A dictates the amplitude (loudness)
- \circ The smaller the distance λ the higher frequency or pitch
- The larger the distance A the louder the sound
- Higher frequency sounds are generally more hazardous

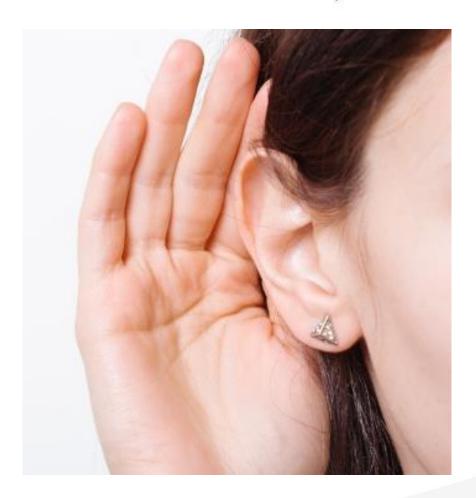
How the Ear Works

What is Noise?


TSG

- Noise can be a nuisance and cause stress
- Noise can be physically debilitating to the autonomic nervous system
- Noise can affect the hearing
- Noise is highly subjective
- Background hum, repetitious or single event

The Physical Effects of Exposure to Noise



Hearing Loss

TSG

- Age the average 40 year old losses around 30dB high frequency hearing
- Illness chicken pox, mumps, measles
- Agent/Substance Ototoxic agents/drugs
- Work Related...
- Noise single event or accumulation of exposure
- Acoustic Shock gun shot, explosion, impact
- Temporary or Permanent Threshold Shift (NITTS, NIPTS)
- Tinnitus

Fact & Figures

- NHS figures from a 2017 study
- Over six million UK residents suffer hearing loss
- ...many more are undiagnosed
- Employment rates are significantly lower among those with hearing loss
- Those suffering hearing loss felt their condition limited their potential
- £2,000 PA lower salary
- Hearing loss causes/contributes early retirement of over 40% of sufferers
- 1,125 new cases of industrial deafness (greater than 50dB) recorded between
 2010 2019
- 95 new cases in 2019
- o Only *five cases* (of the 1,125) are female

Regulatory Compliance

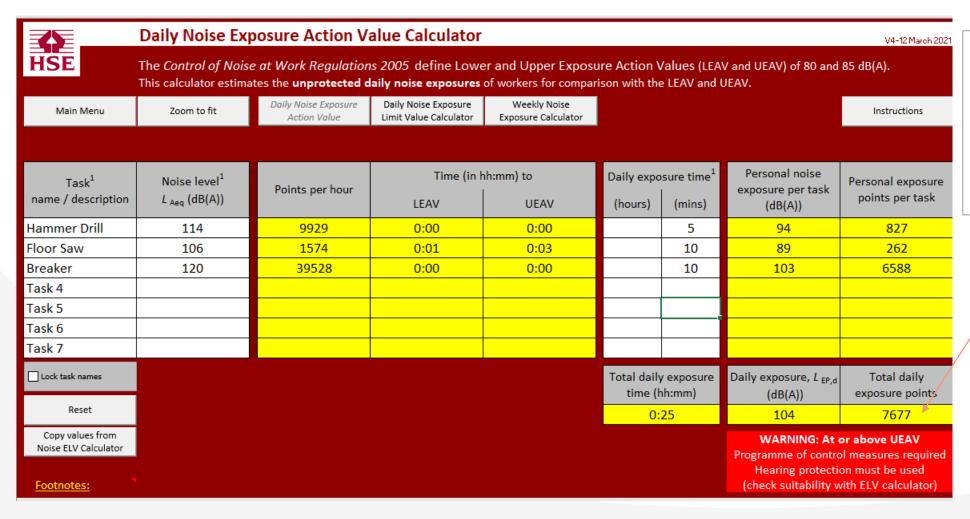
- The Control of Noise at Work Regulations 2005
- Assess the risks to employees from noise at work
- Take action to reduce the noise exposure that produces those risks
- Provide hearing protection
- Ensure legal limits on exposure are not exceeded
- Provide information instruction and training
- Carry out health surveillance where a risk to health exists

The Quantification and Assessment of Noise

- The Control of Noise at Work Regulations 2005
- The Regulations set standards for control
- Three key action values based on an averaged eight hour working day
- >80dB(A) Hearing protection made available on request

- >85dB(A) technical and organisational changes must be made (where reasonably practicable)
 and hearing protection must be made available and worn
- No one shall be subject to >87dB(A) when wearing hearing protection

The Quantification and Assessment of Noise



- Sound is measured in dB across three frequency ranges A, B and C
- Decibels are recorded on logarithmic scale compared to a simple unitary scale like millimetres on degrees Celsius
- 100mm is 10x10mm or 100x1 or 50x2
- On the Decibel scale, the quietest audible sound (perceived near total silence) is 0 dB.
- Starting from near silence A sound 10 times more powerful is 10 dB.
- A sound 100 times more powerful than near total silence is 20dB
- A sound 1,000 times more powerful than near total silence is 30 dB,
- A sound 10,000 times is 40 dB and so on
- 86 dB has 26% more energy than 85 dB

The Quantification and Assessment of Noise

The maximum exposure point value is 160 (when wearing hearing protection)

Measures to Control Noise

Can the task be done differently?

Off site for instance...

Can less noisy equipment be used?

Procurement to review specification

Measures to Control Noise

Baffles on plant & acoustic barriers

Switch of equipment not in use • Multiplier effect – 3dB Rule

Distance & Time

- Inverse Square Law 6dB/20m
- Time limit exposure

Measures to Control Noise

TSG

- Administrative Controls
- Hearing Protection
- Must be comfortable
- Must accommodate other PPE
- Must be of the Correct SNR Rating
- Rating based on 100dB SNR 25 reduces to around 75dB and 4dB for factor of safety so 79dB
- Too great a sound reduction is disconcerting and potentially hazardous

A-weighted noise level (dB)	Select a protector with an SNR of
85-90	20 or less
90-95	20-30
95-100	25-35
100-105	30 or more

Avoid reducing below 70dB

Thank you

Any Questions?

